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Abstract. A way of implementing the density matrix renormalization group (DMRG) method
which simplifies the use of real-space parity as a conserved quantum number is discussed. The
use of parity in the infinite-system DMRG calculations is often necessary in order to calculate
more than the lowest excitation gap in a system. In addition, the use of parity reduces the
computational overhead by a factor of two. Using parity as a symmetry we give numerical
evidence that the infinite-system DMRG method in some cases displays a power-law convergence
with the number of states retained. In particular we show that the often-used measure of the
error in a DMRG calculation, 1− Pm, bears only a marginal resemblance to the true error.
Spin inversion is shown to be a very useful symmetry when performing calculations in the
SzT = 0 subspace, allowing for a distinction between even and odd multiplets even when using
the finite-system method.

1. Introduction

The density matrix renormalization group [1] (DMRG) method allows one to perform
calculations for one-dimensional systems with a precision that is unattainable with most
other methods. The drawback is that one is forced to follow states by means of an iterative
procedure as the system size is increased. It is hence often rather difficult to calculate more
than the gap to the lowest-lying excitation, unless different excitations can be distinguished
by differing quantum numbers. While it is straightforward to perform DMRG calculations
within a subspace where the total particle number,N , or the totalz-component of the
spin, SzT , is conserved, more complicated quantum numbers are often rather difficult to
implement [2, 3]. A particularly simple symmetry, that has been extensively used with the
infinite-system DMRG method [4], is reflection with respect to the mid-point of the system
with associated quantum numbers+1 and−1 for states that are parity even and parity odd
respectively. In order to use this symmetry when performing a DMRG calculation it is
useful to know how individual states transform under a reflection. While this is a trivial
task if one is performing an exact diagonalization, it quickly becomes difficult to determine
how a state transforms once an iteration with the infinite-system DMRG method has been
performed. In the present paper we discuss a simple modification of the usual infinite-
system DMRG scheme. This parity scheme allows for an explicit determination of how
states will transform under a real-space reflection. Within the parity scheme the mapping
between states and their parity-reflected partners is invariant under a DMRG iteration and
can be calculated once and for all at the outset. The parity scheme can be applied equally
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well to open and periodic boundary conditions. In the following we consider mainly the
infinite-system DMRG method which we shall refer to simply as the DMRG method.

The DMRG method involves truncating the Hilbert space representing half of the system
by a factor which is necessarily 1/q, whereq is the number of degrees of freedom for
the site that one is adding. Note that this site need not be a physical site in real space.
After truncation, the half-Hilbert space contains a number of states usually denoted bym.
Naturally, the precision of a calculation increases with the number of states retained,m.
White [1] and Legeza and Fáth [5] as well as Kneer [6] have studied this error extensively
and here we extend their results. It is important to understand exactly how the error depends
onm and how convergence withm is obtained. This is a somewhat difficult task since one
necessarily has to compare to exactly known models of which not many exist. In addition,
the DMRG method is in most cases much more precise if open boundary conditions are used
instead of periodic ones, thus necessitating the use of exact results for this case. While such
results are available for many so-called matrix-product states, they are not of much use since
the DMRG method is alreadyexactfor such states, as has been explicitly verified [7, 8] for
the S = 1 Affleck–Kennedy–Lieb–Tasaki (AKLT) model [9] and theS = 1/2 Majumdar–
Ghosh (MG) model [10]. We therefore focus on the familiarS = 1/2 Heisenberg model,
with the Hamiltonian

HHeis=
L−1∑
j=1

Si · Si+1. (1)

It is well known that the one-dimensional Heisenberg model with periodic boundary
conditions is solvable using the Betheansatz[11]. Perhaps less widely known is the fact
that the same model is also solvable for many other boundary conditions and in particular
for open boundary conditions [12]. Hence, this model is ideal for use in studying the relative
and absolute errors for different values ofm. Below, we present results for both this model,
which is gapless, and for the gap in the MG model. In the latter model the first excited
state is not known exactly, unlike the ground state. However, it is still possible to study
the convergence of the DMRG method and we observe a power-law convergence in both
cases.

2. Parity

We begin by considering the implementation of parity. In order to do this we use the rather
simple modification of the standard DMRG storage scheme, (a) in figure 1, schematically
shown as (b) in figure 1. This is just a more convenient way of representing the Hamiltonian
matrix if parity is to be implemented. Instead of using a reflection of the left-hand side
as a representation of the right-hand Hamiltonian space we simply copy it identically,
and connect the two subspaces in the somewhat more elaborate manner indicated in the
figure. The matrix representing the bond interaction between sitesL/2 andL/2 + 1 is
however always trivial to calculate since it is never truncated with the DMRG method and is
therefore always known exactly. Hence, there is no added complication. However, matrices
representing the two half-spaces are now trivially identical which simplifies the DMRG
calculation greatly. When performing DMRG calculations, matrices,HL,HR, representing
the left-hand and right-hand half-spaces are needed. Before iterating with the DMRG
method, these two matrices are identical for spin systems. After iterating with the DMRG
method using the standard DMRG scheme shown as figure 1(a), the two matrices are no
longer identical element by element, but one can be obtained from the other and therefore
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Figure 1. The effect of a real-space parity reflection in the two schemes. (a) The ‘standard’
scheme. (b) The ‘parity’ scheme.

one usually only stores one of them. Using the scheme shown as figure 1(b), the two
matrices remain identical, which is an advantage.

When implementing parity as a symmetry one has to know how a given state transforms
under a parity reflection. In particular one has to know how states transform in each of the
two half-spaces describing the left-hand and right-hand sides of the system. If we work in
a product basis and consider a half-space of three sites and symbolically denote a state by
|s1s2s3〉, then under parity it will transform into the state|s3s2s1〉. If one knows how states
transform in each of the half-spaces it is straightforward to determine how states for the
complete system transform. What in figure 1 looks like a trivial modification of the DMRG
scheme has an influence on how states transform under parity. As is shown in figure 1,
a parity transformation of the complete system now just amounts to interchanging the two
‘parts’ of the state representing the right-hand and left-hand sides of the system. If we
consider a system of six sites and work in a product basis, we see that before performing
DMRG iterations a parity transformation of a given state would be given by

P|s1s2s3〉|s4s5s6〉 → |s6s5s4〉|s3s2s1〉 (a)

P|s1s2s3〉|s6s5s4〉 → |s6s5s4〉|s1s2s3〉 (b).
(2)

In other words, if states in the standard scheme (a) are represented as|9a〉 = |i〉|j〉 and
those in the parity scheme (b) are represented as|9b〉 = |α〉|β〉, then a parity transformation
yields

P|9a〉 = P[|i〉|j〉] → P[|j〉]P[|i〉] (a)

P|9b〉 = P[|α〉|β〉] → |β〉|α〉 (b)
(3)

eliminating the need to know how states transform in the two half-spaces if the parity scheme
(b) is used. Hence, in the parity scheme (b) it is trivial to write down the corresponding
mapping between states no matter how many DMRG iterations have been performed and
no matter how many statesm are retained. One finds

P|i + (j − 1)qm〉 → |j + (i − 1)qm〉. (4)

Summarizing, the benefits of scheme (b) are as follows.

(i) Matrices representing variables for the right-hand and left-hand sides of the system
are completely identical as opposed to the case for scheme (a).

(ii) If the states are numbered 1, . . . , q2m2 with q the number of degrees of freedom
per site, and the states for the right-hand and left-hand halves of the systems are numbered
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i, j, . . . , qm, then reflection around the mid-point of the system (parity), as shown in
figure 1, will map states as detailed in equation (4).

(iii) By forming parity-invariant states

9P ∝ 9 ± P9 (5)

the DMRG calculation can easily be performed using parity as a quantum number in a
manner completely analogous to what is done in an exact-diagonalization study—thus
allowing states to be classified according to their parity and reducing the computational effort
by a factor of roughly two. HereP denotes the parity operator. Note that in equation (5)
one should, as usual, be careful with states that are invariant under parity.
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Figure 2. 1E = (EDMRG − EBethe)/EBethe, the relative error, and 1− Pm versus the system
size, L. The results are for the Heisenberg model withSzT = 0, P = (−1)L/2, SzT = 1,
P = (−1)L/2+1 andSzT = 2, P = (−1)L/2; in all cases,m = 64 states were retained.

3. Precision

As explained in the introduction, the DMRG method involves a systematic truncation of
the Hilbert space representing one half of the system down to a sizem. The truncation is
done in the space of eigen-vectors of the density matrix representing one half of the system,
and one usually denotes the sum of the corresponding eigenvalues that are eliminated in
a given DMRG iteration by 1− Pm. Sometimes 1− Pm is used as an indication of the
precision of a DMRG calculation. This would seem intuitively clear since a value of 1−Pm
of the order of 1 implies that a lot of information is lost in an iteration. Unfortunately, a
very small value of 1− Pm does not necessarily imply that the results obtained with the
DMRG method are very precise. This is seen in figure 2 where a DMRG calculation for
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the S = 1/2 Heisenberg model is compared to exact Betheansatzresults [12] obtained
using open boundary conditions. We show results for three different states with varying
SzT = 0, 1, 2. The DMRG results are in all cases form = 64, and hence can be improved
upon rather easily. In order to make the most sensible comparison to 1− Pm, the solid
points correspond to therelative error. From figure 2 it is clear that 1− Pm is orders of
magnitude smaller than the real error and in addition it shows hardly any dependence on
SzT . The real error on the other hand depends strongly onSzT and increases rapidly with the
system size. Another way of estimating the relative error of the energy for system sizeL

is to use

1−
L−4∏
l

Pm(l)

instead of simply 1− Pm(L − 2) as we have done above. HerePm(l) is the sum of
the eigenvalues that are retained when the system of sizel is truncated. However, this
expression gives only a small improvement in the estimate of the true error.
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Figure 3. The absolute error1E = EDMRG − EBethe versus the number of states retained,m,
for the ground state,SzT = 0, P = (−1)L/2, of the Heisenberg model. The error is shown for
two different system sizes,L = 50, 100. The solid lines indicate power-law fits with exponents
−6.8(1) (L = 50) and−5.8(1) (L = 100). The dashed lines indicate fits to an exponential
form.

3.1. The infinite-system method—the Heisenberg model

In many cases one wishes to calculate gaps for a given model and to know the finite-size
corrections to such gaps. The relevant quantities to study are therefore the total energies
calculated and theabsoluteerrors associated with such energies. In order to make a more
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detailed study of this error we focus on the two system sizes,L = 50, 100, and study the
absolute error as a function ofm. In figure 3 we show results for theabsoluteerror in the
ground state for these two system sizes asm is increased from 30 to 128. For the results in
figure 3 the calculations were always started atL = 8 and hence for some values ofm the
first few DMRG iterations were exact. As is clearly evident in figure 3, the exact result is
approached as apower lawin m. The exponents extracted forL = 50, 100,−6.8 and−5.8
depend slightly onL. It is also clear that the absolute error does not depend smoothly on
m; somem-values work better than others. As stressed by White [1], this is probably due
to the fact that the DMRG method will work better if complete multiplets of eigen-states
of the density matrix and in particular ofSzL are retained. HereSzL is the totalz-component
of the spin on the left-hand side. This is presumably the case form = sn wheres is the
number of degrees of freedom per site in physical space. Note, thatabsoluteerrors are
shown in figure 3. The precision obtained is therefore rather remarkable, especially in the
light of the highly non-trivial nature of the Heisenberg model which has only algebraically
decaying correlations.

100
m

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

∆E

L=100
L=50
L=30
L=20

Figure 4. The absolute error1E = EDMRG − EBethe versus the number of states retained,
m, for the Heisenberg model. The calculation was performed in theSzT = 1, P = (−1)L/2+1

subspace. The error is shown for different system sizes,L = 20, 30, 50, 100. ForL = 100 the
dashed line indicates a power-law fit with exponent−3.9(1).

Higher-lying states do not display the same impressive precision as the ground state,
as is already evident in figure 2. In figure 4 we show results for the first triplet. The
calculation has been performed analogously to the one that produced the results shown in
figure 3. We show results for four different system sizes,L = 20, 30, 50, 100. The initial
numbers of sites for the results presented in figure 4 were in all casesL = 8. The absolute
error now shows a pronounced dependence on the number of states retained. Some of the
bigger features in the error seems to be associated withm = sn where s is the number
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of degrees of freedom per site. This is perhaps not surprising and one may tentatively
conclude that values ofm = 2n in this case seem to be more useful. As the system size is
increased, the features associated with particular values ofm become less pronounced and
a power-law dependence onm becomes apparent. However, the convergence is slower than
for the ground state, with an exponent close to−4.

3.2. The finite-system method—the Heisenberg model

The results presented in the previous section can be improved upon by using what is usually
referred to as the finite-system method. Here a sequence of asymmetric configurations
HL(L−N −2)••HR(N) are used to describe a system of sizeL. Here•• denotes the two
sites added to the system. AsN is varied, one obtains matricesHL(l),HR(l) progressively
better and better adapted to describingl spins at one end of a finite system ofL sites. We
shall not discuss this method in detail here and refer the reader to reference [1].
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Figure 5. The absolute error1E = EDMRG − EBethe versus the number of states retained,m,
for the ground state of the Heisenberg model. The calculation was initially performed in the
SzT = 0, P = (−1)L/2 subspace and subsequently performed, using the finite-system method, in
theSzT = 0 subspace without parity. Results are shown for the infinite-system method (◦), after
one iteration with the finite-system method (�), after two iterations (♦), after three iterations (4)
and after four iterations (∇). The error is shown for two different system sizes,L = 50, 100.
The solid lines indicate power-law fits to the results obtained after three iterations with the
finite-system method, with exponents−9.0(1) (L = 50) and−7.1(1) (L = 100). The dashed
lines indicate fits to an exponential form.

There are several ways in which one could imagine implementing the scheme for the
finite system just described. Usually, the infinite-system method is applied until a system
size of L is obtained, whereupon a number of complete sweeps with the finite-system
method are performed to improve on the results obtained. Alternatively one can employ
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the finite-system method at each iteration of the infinite-system method, performing several
complete sweeps before adding additional sites to the system. The latter approach is rather
time consuming and we have therefore used the former which is the one most often used
in the literature.

Our results for the ground state of the Heisenberg model are presented in figure 5.
For two different values ofL, 50 and 100, four complete sweeps with the finite-system
method were performed form = 20–120. In all cases the initial system size wasL = 16 as
compared toL = 8 for the results presented in figure 3. The open circles (◦) correspond
to the initial results obtained before iterating with the finite-system method. They are
essentially indistinguishable from the results in figure 3 even though the initial system size
in this case was substantially larger. As is apparent from the results in figure 5, a few
iterations with the finite-system method is sufficient to obtain convergence, and subsequent
iterations lead to only marginal improvement. This is in agreement with previous work of
White [1]. It should be noted that the results for the error shown in figure 5 are for the
symmetric configuration with an equal number of spins inHL,HR. For larger values of
m, significant improvement is obtained with the finite-system method, and forL = 50, a
precision is obtained which is comparable to that of the numerical solution of the Bethe
ansatzequations used to calculate the error. Hence, it is difficult to estimate the error for
larger values ofm. For both values ofL the calculated error after the finite-system method
has been used approximately follows a power law for the values ofm considered, although
a crossover to exponential behaviour for larger values ofm cannot be excluded.

In figure 6 we show results for the stateSzT = 1, P = (−1)L/2+1. For the calculations
performed with the finite-system method, the initial system size wasL = 18. The results
obtained before applying the finite-system method are indicated as open circles (◦) in
figure 6. For comparison, results from figure 4 are shown where the initial system size
in all cases wasL = 8. For the smaller values ofm it is clear that it is advantageous to
begin the calculation with the largest possible system for the infinite-system method also.
With an exponent of−9.4, the use of the finite-system method leads to rather pronounced
improvement in the precision for all values ofm. As was the case for the ground state,
results comparable to the Betheansatzresults are obtained for the larger values ofm.
Tentatively, the data after two iterations with the finite-size method can be fitted with a
power law as shown in figure 6. We have found that the maximal improvement in precision
when using the finite-system method for these excited states is achieved when the initial
system size was as large as possible.

3.3. The Majumdar–Ghosh model

The S = 1/2 Heisenberg model is somewhat particular since it is gapless. It is therefore
reasonable to ask whether the power-law convergence withm is specific to such systems,
and whether for a system with a gap an exponential convergence withm is possible. We
have therefore investigated the MG model in detail, with the Hamiltonian

HMG =
L−1∑
j=1

[
Si · Si+1+ 1

2
Si · Si+2

]
. (6)

This model displays a gap and the ground state can be written as a matrix-product state. This
simple structure is captured by the DMRG method which becomesexactfor the ground state
of these models. We have explicitly checked this, reproducing known results [7, 8]. While
an analytic expression is available for the ground-state wave-function, no such expression
is known for the lowest-lying gapped triplet excitation. The convergence is in this case
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Figure 6. The absolute error1E = EDMRG−EBethe versus the number of states retained,m, for
the Heisenberg model. The calculation was initially performed in theSzT = 1, P = (−1)L/2+1

subspace and subsequently performed, using the finite-system method, in theSzT = 1 subspace
without using parity. Results are shown for the infinite-system method starting withLstart= 18
sites (◦), the infinite-system method starting withLstart= 8 sites (�), after one iteration with
the finite-system method (�), after two iterations (♦), after three iterations (4) and after four
iterations (∇). The error is shown for the system sizeL = 50. The solid line indicates a
power-law fit to the results after two iterations with the finite-system method, with exponent
−9.4(1) (L = 50). The dashed line indicates an exponential fit to the same data.

somewhat more complicated, since a subtraction of the exactly known ground-state energy
leaves the gap in the thermodynamic limit. In general the numerically calculated energy
with a givenL,m can be written in the formE(L,m) = E(L) + f (L;m), with f any
function that tends to zero withm. KeepingL fixed, we can then study the functional form
of f by calculating1E = E(L,m = m1) − E(L,m = m2) = g(L;m), for two different
values ofm. If f shows a power-law dependence onm for a givenL, then so willg. We
have performed such an analysis for the triplet state of the MG model, and find a behaviour
equivalent to what is shown in figure 4. The error again approaches a power law asL

is increased and one observes pronounced steps wheneverm = sn. The DMRG method
is for this triplet gap extremely precise, and when plotting the gap as a function ofL no
discernible difference between the results from calculations performed withm = 60 and
128 is visible to the naked eye. Most of the error in calculating the gap therefore comes
from the extrapolation to the thermodynamic limit. Assuming a dispersion relation of the
form [4] ω(k) = 1+ v2(k − π)2/21 one finds that the energy of the gapped state should
be

E(L) = 1+ (vπ)2

21(L+ 1)2
+O(L−3).
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Herev is the associated velocity. We have fitted our results using this form and the results
are shown in table 1. The results for1 are only weakly dependent onm and agree well
with previous studies [7, 8]. The consistency of the values for the second coefficient allows
for a determination of the velocityv ' 1.43J ' √2J ; this is slightly different to that from
the unfrustrated Heisenberg model, wherev = Jπ/2. Here we have used1 = 0.2340(1).

In order to study singlet excitations it is often quite useful to implement spin-inversion
(particle–hole) symmetry [2], along with parity, in theSzT subspace. This symmetry is
extremelyuseful since it allows for a clear distinction between low-lying singlets and
triplets in theSzT = 0 subspace; hence the singlet gap can be calculated without difficulty.
For the MG model we have calculated the singlet gap using this symmetry and we find
100 = 0.2340(1) with the same velocity as for the triplet excitation. Hence, the triplet
and singlet excitations are degenerate. Spin inversion can be implemented along with
parity, resulting in roughly a fourfold decrease in the computational effort. In addition this
symmetry can be used with the finite-system method.

Table 1. The gap to the triplet excitation in the MG model, shown with associated fitting
coefficients.

m 1 (L+ 1)−2 (L+ 1)−3

16 0.235 342 43.2 −434
32 0.233 995 43.3 −409
40 0.233 968 43.5 −419
50 0.233 983 43.2 −403
60 0.233 973 43.3 −409
64 0.233 965 43.4 −413
70 0.233 967 43.3 −411
80 0.233 968 43.3 −409
90 0.233 964 43.4 −412

100 0.233 953 43.5 −419
110 0.233 960 43.4 −414
120 0.233 961 43.4 −414
128 0.233 963 43.4 −412

4. Conclusions

In conclusion, we have presented a simple and hence very attractive way of implementing
parity as a symmetry when performing DMRG calculations. We have shown that the
DMRG method appears to converge as a power law inm, the number of states retained,
for two non-trivial models. Kneer [6] has studied the absolute error in the 1D Hubbard
model and interprets the results as having an exponential convergence in the number of
states. However, an interpretation of his data in terms of a power-law convergence seems
equally plausible. It is conceivable that more elaborate DMRG schemes will show faster
convergence. In particular White and Affleck (reference [8]) seem to favour an exponential
convergence for some quantities. It also remains a possibility that models where the gap
is to a well-defined mode and not to a continuum, as is the case for the MG model, could
display an exponential convergence withm. We also cannot exclude the possibility that
for significantly larger values ofm a crossover to exponential convergence occurs for the
models considered here. However, an investigation of larger values ofm would require
an extensive analysis of round-off errors in the numerical calculation of the Betheansatz
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results in order to allow a reliable comparison to the already very precise DMRG results.
Many variations of the finite-system method can be imagined and it would be desirable

to have more complete results than the ones presented here, which are only meant to
complement the results for the infinite-system method. It would also be interesting to
repeat the above analysis of the precision of the DMRG method for disordered systems
where a systematic convergence seems more doubtful. However, in this case exact results
are rather more scarce. Recently, Anderssonet al [13] have extensively analysed the error
associated with calculating the correlation functions in the Heisenberg model.
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